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Abstract

Radiative properties of particulate matter must be calculated accurately and in an expeditious way, in order to
ensure both correct radiative transfer predictions and computational efficiency, requiring practicable computation time
expenditure. The influence of large particles in radiative transfer is of major importance, placing an increased emphasis
on the asymptotic solutions applicable to those particles. For large particles the scattering is highly anisotropic, causing
the asymmetry factor to assume a very significant role. In the present work, an efficient method for the calculation of
the asymptotic limits of both scattering efficiency and asymmetry factor for spherical particles is presented. The results
are presented in simple and closed form expressions that exhibit a high degree of accuracy. This allows for a simul-
taneously accurate and expeditious evaluation of the referred parameters for large particles. © 2001 Elsevier Science

Ltd. All rights reserved.

1. Introduction

When performing radiative transfer calculations in
participative and anisotropically scattering media, one
of the fundamental parameters that must be known,
besides the extinction and scattering efficiencies, is the
asymmetry factor. The influence of this parameter be-
comes more striking as the scattering anisotropy of the
medium increases.

As it is well known, the scattering properties of the
media found in combustion environments stem from the
presence of solid particles, since the gaseous phase has a
negligible influence in this phenomenon. Moreover, the
scattering anisotropy of solid particles is strongly influ-
enced by their size, since small particles like soot (small
diameter when compared with the radiation wavelength)
behave nearly isotropically, while large particles exhibit
a marked anisotropic forward scattering.
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Recalling that large particles have a much more im-
portant contribution for the radiative heat transfer
mechanism than small ones [1], it can be concluded that
the correct evaluation of the radiative properties of large
particles is mandatory for accurate predictions of radi-
ative heat transfer in combustion equipments, and that,
within these properties, the asymmetry factor plays a
major role.

Care must be taken so that the evaluation of the
radiative properties of participating media is performed
in an efficient fashion, particularly if radiative transfer
calculations are to be coupled with CFD and combus-
tion calculation, as previously referred by the authors
(e.g., [2,3)]).

Within this scope, the asymptotic limit values of the
radiative properties of particulate matter constitute an
extremely useful result, since they apply to large par-
ticles, the most important contributors to radiative
transfer, and can be used as an input to more general
models, see e.g., [2,3].

Therefore, an efficient method for the calculation of
the asymptotic limits of particulate matter radiative
properties appears to be mandatory. In the present note,
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such a method is presented and discussed. More pre-
cisely, recourse is made to an approximation previously
used by [4] for the calculation of the hemispherical
emissivity of surfaces to derive herein simple and closed
form expressions that allow for a very accurate evalua-
tion of the referred parameters, particularly if the re-
fractive index of the particles presents a high value.

2. Analysis and results

As known from the general theory of scattering by a
sphere (e.g., [5] or [6]) the scattering efficiency (Q;) and
the asymmetry factor (g) of an isolated particle are given
by Egs. (1) and (2), respectively, where u is the cosine of
the scattering angle (u = cos 0), x represents the particles
size parameter given by x = nD/A, D being the particle
diameter and A being the radiation wavelength, and i(u)
is the dimensionless unpolarised scattering intensity.
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In the limit of large particles (large diameters when
compared to the radiation wavelength) these factors can
be expressed as in Egs. (3) and (4), see [5] or [6] for
details, where v and w are parameters discussed below.
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Notice that in these equations the diffraction effects are
included. In fact, although diffraction is commonly
neglected for large particles since it is essentially in the
forward direction, the authors believe that it should be
included for compatibility with more general theories
applicable to smaller particles, like Mie theory, where
diffraction and reflection cannot be separated. Should
diffraction effects not be considered Eqs. (3) and (4)
would read: O, =w and g = v/w.

It is convenient to separate the contribution to the w
and v parameters into those resulting from perpendicu-
larly and parallel polarised intensity components, as in
Egs. (5) and (6), where subscripts 1 and 2 represent the
perpendicularly polarised intensity component and the
parallel polarised intensity component, respectively.
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The expressions for the evaluation of each of these
components are given by Egs. (7) and (8) (see e.g., [5]).
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In the previous equations »; and r, represent the Fresnel
reflection coefficients given by Egs. (9a) and (9b) (see
e.g., [5,6] or [7]), where 7 is the angle of incidence and m
is the complex refractive index (m = n — ik).
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The square of the moduli of the Fresnel reflection co-
efficients can be expressed, after some algebraic ma-
nipulation, by Egs. (10a) and (10b) (see e.g., [5] or [7]).
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In the above equations, p and ¢ are parameters that
depend both on m and t, and are defined by Eq. (11).

p—ig=Vm?—sin’t (11)

Notice that the integration indicated on Egs. (7) and (8)
is performed on p, while the Fresnel reflection coef-
ficients — Egs. (10a) and (10b) — are expressed in terms of
the angle of incidence, 7. However, in the case of very
large particles there is a simple relation between u and t,
since it is assumed that all the radiation that enters the
particle is absorbed and only external reflections are
considered. This relation is expressed by Eq. (12).

0=mn—21. (12)
The relations that allow for an immediate evaluation of

the Fresnel reflection coefficients in terms of u are given
by Egs. (13a), (13b), and (13c).
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After performing the change in variable indicated be-
fore, from 7 to pu, the resulting expressions for the
Fresnel reflection coefficients are much involved to allow
for their analytical integration. Therefore, the evaluation
of the scattering efficiency and of the asymmetry factor
would require a numerical integration, fact that would
jeopardise the efficiency of their calculation.

However, if the values of n and £ are high, the term
sin® 7 can be neglected in Eq. (11) — resulting in p = n
and ¢ = k. Therefore, the squares of the moduli of the
Fresnel reflection coefficients given by Eqgs. (10a) and
(10b) assume simpler forms, as expressed by Egs. (14a)
and (14b) (see e.g., [7]).
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Using this approximation, the integrals of equations (7)
and (8) can be performed analytically, yielding for the
scattering efficiency the result presented in Egs. (15a)
and (15b), where the nomenclature presented in Eqs.
(16a)—(16¢) is used.
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Notice that [4] has used this approximation to determine
the hemispherical emissivity of surfaces and that Egs.
(15a) and (15b) can be directly derived from his work,
since w; = 1 —¢ and w = 1 — &. However, the result of
the integration of equation (8) under the same approx-
imation has never been presented elsewhere, to the ex-
tent of the authors knowledge, that result being
expressed by Egs. (17a) and (17b).

c B— 2B + 82k
o = {Snz(l —4B)In (Z) _gpo el

thil(niA) —gn[l +6n—6(B+2n2)} ,

(17a)

BA* — 2B* + 8n’k?

Uy %

= % {8;12 (4> —4B) In(C) —8n

() i 2]

(17b)

Fig. 1 shows the relative error contours of the scattering
efficiency calculated through Egs. (15a) and (15b) when
compared with the numerical integration of equation
(7). It can be noticed that the isolines of the relative error
follow a roughly circular pattern centred about
n=1.0,k = 0.0, where the maximum error (9.0%) oc-
curs. It is also perceivable that the relative error of the
solution is inferior to 2.0% if (n — 1)* + k? > 0.43, and if
(n —1)* + k* > 1.02 the relative error is always inferior
to 1.0%.

Fig. 2 displays the relative error contours of the
asymmetry factor calculated through Eqs. (17a) and
(17b) when compared with the numerical integration of
equation (8). Observing that figure, it becomes quite
evident that the relative error associated with Egs. (17a)
and (17b), is much lower than that associated with Eqgs.
(15a) and (15b). In fact, the maximum error presented
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Fig. 1. Relative error (%) produced by Egs. (15a) and (15b) for
the evaluation of the scattering efficiency.
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Fig. 2. Relative error (%) produced by Egs. (17a) and (17b) for
the evaluation of the asymmetry factor.
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by this approximation is of 2.6%, occurring also at
n = 1.0, k = 0.0. Again a circular pattern in the relative
error isolines is clearly discernible, although their mag-
nitude is much lower than in the previous case. It can be
noticed that for (n — 1)* 4 k% > 0.23 the relative error is
always inferior to 1.0%, and that if (n — 1)* + &% > 0.71
than, the relative error does not go beyond 0.5%.

3. Conclusions

For the first time, a known approximation was ap-
plied to the calculation of the asymmetry factor and
scattering efficiency of large spherical solid particles.

For the case of the scattering efficiency evaluation
this approximation provides a simple and closed form
expression that yields very accurate results, particularly
if the refractive index presents high values,
(n—1)" +k > 1.02.

For the case of the asymmetry factor evaluation,
where this approximation was used, the results achieved,
also presented in closed form expressions, display an
even greater accuracy than in the previous case.
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